## Nuclear Safety

### Module 3

## **DEFENSE IN DEPTH**

Slide 1

Rescusa03.pp

## Defense in Depth

The principle that multiple, redundant nuclear safety provisions are required to protect workers, the public and the environment from the radiological hazards of NPP operations.

Slide 2

## Assumptions Inherent in Defense in Depth Safety Philosophy

- 1. People make mistakes
- 2. Design isn't perfect
- 3. Equipment fails

Slide 3

## Safety Culture Model



- 1) Accident prevention
- 2) Accident mitigation
- 3) Accident management

Slide 5

#### 1) Accident prevention

- quality design, procurement, construction, operations and maintenance for reliable systems
- faults detected and corrected promptly
- when systems fail, upsets prevented from escalating
  - » automatic system response
  - » unit placed in safe state by well-trained staff using approved procedures
- standby safety support systems

Slide 6

#### 2) Accident mitigation

- shut down, cool, contain (via special safety systems, for serious process failures)
- AIM procedures executed by trained staff

Slide 7

#### 3) Accident accommodation

- emergency response procedures executed by trained staff
- public notifications and protective measures
   » eg, banning food & water, sheltering,
   evacuation, KI pills
- Province, Municipalities and Federal Govt.
   respond per Nuclear Emergency Plans

Slide 8

#### Maintenance on Safety Related Systems

- O&M activities on safety related systems can impair or remove a layer of defense
- Then countermeasures are required to compensate for the increased risk
  - <u>Example 1</u>: Quiet mode operation to reduce probability of upset
  - <u>Example 2</u>: Synchronizing SG to class 3 bus to increase reliability
  - Example 3: Dedicated Operator when placing one liquid zone on manual control

Slide 9

## Why Use Approved Procedures?

- Extra layers of defense provided
- Technical and Operational reviews ensure that:
  - potential effects on other systems have been considered
  - barriers to releasing radioactivity are not compromised
  - procedures addressing system failures really do put unit into a safe state

Slide 10

## Defense in Depth in Event Diagnosis

- Operator training (classroom, field, simulator, co-piloting)
- Diagnostic aids (eg, CSP display, PRAG)
- Independent diagnosis by SOS and SS
- Monitoring critical safety parameters during recovery to ensure that unit is responding predictably, consistent with diagnosis

Slide 11

## Placing an Automated Control System on Manual Control

- Observe similar constraints as designed into automated system
- Dedicate an Operator where appropriate, to simulate the 'undistracted' operation of the automatic controller--eg, controlling one liquid zone level

Slide 12

Rescse03.ppt

## Role of Training & Qualification in Defense in Depth

#### Equips staff to:

- recognize when a layer of defense is jeopardized
- perform critical O&M activities safely--eg,
  - Instrument calibration
  - Safety system testing
  - Panel checks
- identify equipment failures at incipient stage
- execute emergency procedures safely

Slide 13

## The 5 Barriers between Fission Products and the Public

- 1. Ceramic fuel
- 2. Fuel sheath
- 3. HTS boundary
- 4. Containment
- 5. Exclusion zone

Slide 14

Rescus03.ppt

# Impact of Large Scale Fuel Failures on the Five Physical Barriers

- At least 2 barriers breached (ceramic and sheath)
- In event of a LOCA, third barrier (HTS boundary) also breached
- In event of a dual failure, fourth barrier (Containment) also breached

Slide 15



## Examples of Active and Passive Systems

|   | Process<br>System | Safety Support<br>System          | Special Safety<br>System | Standby Safety<br>Support System        |
|---|-------------------|-----------------------------------|--------------------------|-----------------------------------------|
| ٠ | PHT               | Electrical power                  | • SDS1                   | Steam Gen./Boiler     Emergency Cooling |
| ٠ | Mod. Aux.         | <ul> <li>Process water</li> </ul> | • SDS2                   | Standby generators                      |
|   |                   | Instrument air                    | • ECI                    | Containment<br>venting                  |
|   |                   | Backup heat sinks                 | Containment              | Setback and stepback                    |
|   |                   | Secondary control area            |                          | Emergency water                         |
| 1 |                   | Annulus gas                       | 1                        | Emergency power                         |
|   |                   | • PHT                             |                          | Secondary control     areas             |
| L |                   | Moderator                         |                          | Backup heat sinks                       |

Stide 17

